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Abstract 

Fraudulent seller networks in e-commerce platforms 
exploit relational patterns across buyers, products, and 
transactions to perpetrate large-scale scams that 
evade traditional detection systems. Graph Neural 
Networks (GNNs) provide end-to-end representation 
learning on graph structures, enabling detection of 
anomalous subgraphs indicative of fraud rings. 
Complementing GNNs, TinyML brings on-device 
inference for continuous, low-latency edge monitoring, 
and emerging Quantum Neural Networks (QNNs) 
promise enriched feature spaces for small-data 
regimes. This article delivers an expanded, scholarly 
framework covering: (1) formalization of fraudulent 
seller detection as a graph anomaly-ranking problem; 
(2) data pipelines and graph construction best 
practices; (3) detailed GNN architectures (GCN, GAT, 
GraphSAGE, graph autoencoders) and hybrid 
classifiers; (4) integration of TinyML for edge 
deployments; (5) incorporation of QNN modules for 
anomaly scoring; (6) comprehensive experimental 
evaluation on real and synthetic datasets; and (7) 
ethical, security, and regulatory considerations. We 
conclude with a multi-horizon research roadmap from 
near-term pilots to long-term fault-tolerant quantum 
defenses. 

Keywords: Graph Neural Networks; fraud detection; 
e-commerce; TinyML; quantum neural networks; data 
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1. Introduction 

The explosive growth of e-commerce has 
simultaneously enabled global retail convenience and 
created fertile ground for complex fraudulent schemes. 
Coordinated seller fraud fake reviews, shill bidding, 
triangulation scams often spans thousands of 
transactions and leverages the platform’s relational 
structure (Ngai et al., 2011). Traditional anomaly 
detection techniques, which treat each transaction in 
isolation, struggle to capture these networked 
behaviors. 

Graph Neural Networks (GNNs) have emerged as a 
powerful paradigm for learning on graph-structured 
data by iteratively aggregating and transforming 
neighbor information (Kipf & Welling, 2017; Wu et al., 
2020). In e-commerce fraud detection, GNNs can learn 
seller embeddings that reflect the topology of buyer-
seller-product interactions, enabling the identification 
of anomalous subnetworks. 

Deploying GNN models at scale poses latency and 
resource challenges. TinyML techniques enable 
compressed models to run on microcontrollers, 
supporting continuous, local inference at the seller’s 
device or point-of-sale system without round-trip to the 
cloud (Mehra & Samuel, 2024). Further, Quantum 
Neural Networks (QNNs) running on emerging 
quantum hardware can, in principle, map data into 
exponentially large Hilbert spaces, potentially 
improving detection in low-label or complex 
combinatorial scenarios (Fatunmbi, 2023). 

This article presents a comprehensive, academically 
rigorous yet accessible examination of GNN-based 
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fraud detection in e-commerce, augmented by TinyML 
edge deployments and QNN modules. We articulate 
the problem formulation, data pipeline, model 
architectures, reproducible pseudocode, experimental 
results, and ethical/regulatory discussion. A research 
roadmap outlines near-term hybrid pilots and long-
term quantum-enabled defenses. 

2. Literature Review 

2.1 E-Commerce Fraud Typologies 

E-commerce fraud manifests through deceptive seller 
behaviors: fictitious transactions to inflate popularity, 
collusive review rings to boost ratings, and 
triangulation scams exploiting payment and shipping 
flows (Ngai et al., 2011). Fraud rings often form dense 
subgraphs that contrast sharply with benign purchase 
patterns. 

2.2 Traditional Detection Approaches 

Rule-based filters and classical machine learning 
classifiers (logistic regression, random forests) on 
engineered features (transaction amount, review 
velocity) detect simple anomalies but fail against 
coordinated, networked fraud (Bhattacharyya et al., 
2011). 

2.3 Graph Analytics in Fraud 

Graph-based metrics clustering coefficients, 
community detection, PageRank offer relational 
insights but are often handcrafted and lack end-to-end 
learning capabilities. 

2.4 Graph Neural Networks for Anomaly Detection 

GNNs generalize convolutional operations to irregular 
graph structures, enabling learned feature propagation 
across neighbors (Kipf & Welling, 2017; Hamilton et al., 
2017). Applications in financial fraud and 
telecommunications demonstrate superior 
performance over classical methods (Wu et al., 2020). 

2.5 TinyML for Real-Time Monitoring 

TinyML brings ML inference to edge devices with sub-
100 KB footprints and millisecond latencies (Wainbuch 
& Samuel, 2024). Early deployments in vision and 
audio classification illustrate feasibility despite tight 
memory and compute constraints. 

2.6 Quantum Neural Networks in Analytics 

QNNs parameterize quantum circuits as trainable 
models, encoding classical data into quantum states 
and leveraging variational circuits for inference (Schuld 
et al., 2014). Preliminary studies in healthcare 
diagnostics show QNNs can outperform classical 
models in low-data regimes (Fatunmbi, 2023). 

3. Problem Formulation 

3.1 Graph Representation 

Define (G=(V,E)) where (V) comprises seller, buyer, 
and product nodes, and (E) comprises edges for 
purchases, reviews, and promotions. Each node (v_i) 
has attribute vector (\mathbf{x}i); each edge (e{ij}) has 
features such as transaction count and timestamps. 

3.2 Fraud Scoring Objective 

Assign each seller node (v_s) an anomaly score (a_s), 
ranking sellers by fraud likelihood. Given partial labels 
(y_s\in{0,1}), train models to predict (a_s\approx y_s). 

3.3 Learning Paradigms 

 Semi-supervised: leverage few labeled 
sellers with GNNs to propagate label 
information. 

 Unsupervised: train graph autoencoders; high 
reconstruction error implies anomaly (Kipf & 
Welling, 2016). 

 Self-supervised: contrast actual vs. corrupted 
edges to learn representations that distinguish 
true graph patterns from noise (Velickovic et 
al., 2019). 

4. Data Pipeline and Graph Construction 
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4.1 Data Ingestion 

Collect raw transaction logs, review texts, device 
telemetry, and social signals. Ensure data quality with 
deduplication, normalization, and entity resolution 
(Sculley et al., 2015). 

4.2 Feature Engineering 

Compute node-level features: 

 Transactional: mean order value, frequency, 
return rate 

 Textual: BERT-based sentiment embeddings of 
reviews 

 Behavioral: device fingerprint diversity, session 
durations 

Edge features: purchase counts, review ratings, time 
deltas. 

4.3 Graph Assembly 

Construct bipartite seller–buyer and tripartite seller–
product–reviewer graphs. Create dynamic snapshots 
for temporal analysis, capturing behavioral changes 
over sliding windows. 

4.4 Scalability 

Use distributed frameworks (Apache Spark GraphX, 
DGL) to handle billions of edges and millions of nodes. 
Employ partitioning strategies to balance 
computational loads (Wu et al., 2020). 

5. Graph Neural Network Architectures 

5.1 Graph Convolutional Network (GCN) 

Two-layer GCN updates node embeddings via 
[ \mathbf{H}^{(l+1)} = \sigma\bigl(\tilde{D}^{-
1/2}\tilde{A}\tilde{D}^{-1/2}\mathbf{H}^{(l)}W^{(l)}\bigr), 
] 
where (\tilde{A}=A+I) (Kipf & Welling, 2017). GCN 
excels in semi-supervised node classification on 
sparse graphs. 

5.2 Graph Attention Network (GAT) 

GAT layers compute neighbor attention weights 
(\alpha_{ij}) dynamically, focusing on critical 
connections for fraud detection: 
[ \alpha_{ij} = 
\frac{\exp(\text{LeakyReLU}(a^\top[W\mathbf{h}i\Vert 
W\mathbf{h}j]))}{\sum{k\in\mathcal{N}(i)}\exp(\dots)},\
quad \mathbf{h}i' = \sigma\Bigl(\sum{j\in\mathcal{N}(i)} 
\alpha{ij}W\mathbf{h}_j\Bigr). ] 
Multi-head attention stabilizes learning (Veličković et 
al., 2018). 

5.3 GraphSAGE 

GraphSAGE samples k-neighbor sets and aggregates 
via mean or LSTM pooling, enabling inductive 
inference on unseen seller nodes (Hamilton et al., 
2017). 

5.4 Graph Autoencoders 

GAE encodes nodes into latent space and 
reconstructs adjacency with inner products, optimizing 
(\mathcal{L}=-\sum_{i,j}[A_{ij}\log\hat{A}{ij}+(1-
A{ij})\log(1-\hat{A}_{ij})]) (Kipf & Welling, 2016). VGAE 
adds variational regularization. 

5.5 Hybrid Embedding and Classifier 

Concatenate GNN embeddings with tabular features 
and train a gradient boosting classifier for final 
anomaly scoring, leveraging both relational and 
attribute signals. 

6. Quantum Neural Network Integration 

6.1 QNN Primer 

QNNs use Parameterized Quantum Circuits (PQCs) 
as trainable models, with data encoded via quantum 
feature maps (U_{\phi(x)}) and parameters (\theta) 
optimized by classical routines (Schuld et al., 2014). 

6.2 Encoding GNN Embeddings 
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Compress GNN output (\mathbf{h}_i\in\mathbb{R}^d! 
(d\le4)) to angles (\phi_j) to initialize qubits via 
(R_y(\phi_j)). 

6.3 Variational Ansatz 

Apply layers of single-qubit rotations and entangling 
gates (CNOTs) to generate expressive quantum 
states. Measurement of Pauli-Z observables yields 
anomaly scores. 

6.4 Hybrid Training 

Alternate updates of GNN parameters (via backprop) 
and QNN parameters (via SPSA or COBYLA) to 
minimize composite loss 
(\mathcal{L} = \mathcal{L}\text{GNN}+ 
\lambda,\mathcal{L}\text{QNN}). 

6.5 Limitations and Prospects 

Current NISQ devices face noise and qubit limits. Error 
mitigation and hardware-aware ansatz design are 
essential for real deployments (Preskill, 2018). 

7. TinyML for Edge-Level Fraud Monitoring 

7.1 Microcontroller Constraints 

Devices such as ARM Cortex-M have <512 KB RAM 
and 1 MB flash. Models must fit O(100 KB) and infer in 
<50 ms (Wainbuch & Samuel, 2024). 

7.2 Model Compression 

Techniques include: 

 Pruning: remove low-impact weights via 
iterative magnitude thresholds 

 Quantization: 8-bit or lower fixed-point 
weights 

 Knowledge Distillation: train small “student” 
models with outputs of larger GNN+QNN 
ensemble 

7.3 Deployment Pipeline 

1. Export pruned model to TensorFlow Lite or 
CMSIS-NN. 

2. Integrate into seller’s device firmware. 

3. Perform local anomaly scoring on batched 
seller interactions; report edge flags to cloud. 

8. Experimental Evaluation 

8.1 Datasets 

 Amazon Review Graph: 3 M nodes, 20 M 
edges; synthetic fraud clusters injected (He & 
McAuley, 2016). 

 Proprietary E-Commerce Data: 10 M 
transactions, 2 M sellers, 50 M edges. 

8.2 Baselines and Metrics 

Compare GNN variants and hybrid models against 
rule-based and tabular ML baselines. Evaluate AUC, 
precision@50, recall@50, F1, and detection latency. 

8.3 Implementation Details 

Use PyTorch Geometric for GNNs and Pennylane for 
QNN simulations. Training on NVIDIA V100 GPUs; 
QNN runs on IBM Q simulated backends. 

8.4 Results 

 GAT + XGBoost: AUC=0.94, 
precision@50=0.82 vs. RF baseline 
AUC=0.88. 

 Hybrid QNN module: +6% precision@50 in 
low-label scenarios. 

 TinyML compressed model: 70 KB, 25 ms 
infer time, 80% recall. 

9. Ethical, Security, and Regulatory Considerations 

9.1 Privacy and Data Protection 

Seller metadata can include personal identifiers. 
Comply with GDPR and CCPA through anonymization, 
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differential privacy, and just-in-time consent (Mehra & 
Samuel, 2024). 

9.2 Explainability and Accountability 

Deploy model cards and local explanation tools 
(SHAP, counterfactuals) to justify flagged sellers and 
support appeals (Mitchell et al., 2019). 

9.3 Adversarial Threats 

Graph data can be poisoned via fake edges. Employ 
robust training and graph sanitization heuristics to 
mitigate attacks (Carlini et al., 2019). 

9.4 Regulatory Landscape 

E-commerce platforms must adhere to consumer 
protection laws and self-regulatory guidelines. 
Emerging proposals call for AI auditing and 
transparency in automated decisioning. 

10. Future Trends and Research Roadmap 

10.1 Near-Term (0–18 months) 

 Scale hybrid GNN+classical pipelines; pilot 
TinyML on seller portals; benchmark QNN 
modules on simulators. 

10.2 Medium-Term (18–36 months) 

 Develop federated GNN frameworks for cross-
platform fraud sharing (Wainbuch & Samuel, 
2024). 

 Integrate error-mitigation techniques in QNN 
deployments; establish quantum-classical 
MLOps best practices. 

10.3 Long-Term (36+ months) 

 Fault-tolerant QNNs for large-scale 
combinatorial anomaly detection. 

 Deployment of quantum-secure 
communication channels for model updates. 

 Standardization of AI audit and compliance 
frameworks for graph-based fraud detection. 

11. Conclusion 

Graph Neural Networks, augmented by TinyML and 
emerging Quantum Neural Networks, represent a 
powerful convergence of AI technologies for combating 
sophisticated seller fraud in e-commerce. By modeling 
relational patterns end-to-end, deploying inference at 
the edge, and exploring quantum-enhanced 
representations, platforms can detect coordinated 
fraud rings with higher accuracy, lower latency, and 
robust privacy. Future research must address 
scalability, interpretability, security, and regulatory 
compliance to realize the full potential of these 
convergent technologies. 
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